

NETL Life Cycle Inventory Data Process Documentation File

Process Name: Co		ombustion of Die	sel				
Reference Flow: 1			1 kg of Diesel				
-			This unit process includes the emissions associated with the combustion of diesel				
			Section I: M	leta Da	nta		
Geo	graphical Covera	age:	United States		Region: N/A		
Yea	r Data Best Repr	esents:	2012				
Proc	cess Type:		Energy Conversi	ion (EC))		
Proc	cess Scope:		Gate-to-Gate Pro	ocess (0	GG)		
Allo	cation Applied:		No				
Com	npleteness:		All Relevant Flow	ws Capt	ured		
Flov	vs Aggregated in	Data Se	et:				
V	☑ Process	☐ Energ	y Use	□Ene	ergy P&D	☐ Material P&D	
Rele	evant Output Flo	ws Inclu	ıded in Data Se	t:			
R	Releases to Air:	☑ Green	house Gases	☑ Cri	teria Air	✓ Other	
R	Releases to Water:	☐ Inorg	anic	Org	ganic Emissions	☐ Other	
٧	Vater Usage:	■ Water	Consumption	□Wa	ter Demand (throu	ghput)	
R	Releases to Soil:	□Inorg	anic Releases	□ Org	ganic Releases	□ Other	
Adju	ustable Process I	Paramet	ers:				
1	_3_But				[kg/kg diesel] 1,3 per kg of combust	-Butadiene emissions ted diesel	
A	ace_ene				[kg/kg diesel] Ace per kg of combust	enaphthene emissions ted diesel	
A	ace_ylene				[kg/kg diesel] Ace per kg of combust	enaphthylene emissions ted diesel	
Α	ce_yde				[kg/kg diesel] Ace	etaldehyde emissions	

per kg of combusted diesel

NETL Life Cycle Inventory Data - Process Documentation File

Acrolein	[kg/kg diesel] Acrolein emissions per kg
	of combusted diesel

Aldehydes [kg/kg diesel] Aldehydes emissions per

kg of combusted diesel

Anthracene [kg/kg diesel] Anthracene emissions per

kg of combusted diesel

Arsenic [kg/kg diesel] Arsenic emissions per kg

of combusted diesel

Benzene [kg/kg diesel] Benzene emissions per kg

of combusted diesel

Benz_cene [kg/kg diesel] Benzo (a) anthracene

emissions per kg of combusted diesel

Benz_pyr [kg/kg diesel] Benzo (a) pyrene

emissions per kg of combusted diesel

Benz_b_fluor [kg/kg diesel] Benzo (b) fluoranthene

emissions per kg of combusted diesel

Benz_per [kg/kg diesel] Benzo (g,h,i) perylene

emissions per kg of combusted diesel

Benz_k_fluor [kg/kg diesel] Benzo (k) fluroanthene

emissions per kg of combusted diesel

Beryllium [kg/kg diesel] Beryllium emissions per

kg of combusted diesel

Cadmium [kg/kg diesel] Cadmium emissions per

kg of combusted diesel

CH4 [kg/kg diesel] Methane emissions per kg

of combusted diesel

Chromium [kg/kg diesel] Chromium emissions per

kg of combusted diesel

Chrysene [kg/kg diesel] Chrysene emissions per

kg of combusted diesel

CO [kg/kg diesel] Carbon monoxide

emissions per kg of combusted diesel

CO2 [kg/kg diesel] Carbon dioxide emissions

per kg of combusted diesel

Dib_anth [kg/kg diesel] Dibenzo(a,h) anthracene

emissions per kg of combusted diesel

NETL Life Cycle Inventory Data - Process Documentation File

Ethyl_b	[kg/kg diesel] Ethyl Benzene emissions per kg of combusted diesel
Fluoran	[kg/kg diesel] Fluroanthene emissions per kg of combusted diesel
Fluor	[kg/kg diesel] Fluorene emissions per kg of combusted diesel
Form	[kg/kg diesel] Formaldehyde emissions per kg of combusted diesel
HC	[kg/kg diesel] Hydrocarbon emissions per kg of combusted diesel
Ind_pyr	[kg/kg diesel] Indeno(1,2,3,c,d)pyrene particle emissions per kg of combusted diesel
Iso_xylene	[kg/kg diesel] Isomers of xylene emissions per kg of combusted diesel
Lead	[kg/kg diesel] Lead emissions per kg of combusted diesel
Manganese	[kg/kg diesel] Manganese emissions per kg of combusted diesel
Mercury	[kg/kg diesel] Mercury emissions per kg of combusted diesel
N2O	[kg/kg diesel] Nitrous oxide emissions per kg of combusted diesel
Naph	[kg/kg diesel] Naphthalene emissions per kg of combusted diesel
NH3	[kg/kg diesel] Ammonia emissions per kg of combusted diesel
Nickel	[kg/kg diesel] Nickel emissions per kg of combusted diesel
NO	[kg/kg diesel] Nitric Oxide emissions per kg of combusted diesel
NO2	[kg/kg diesel] Nitrogen dioxide emissions per kg of combusted diesel
Phen	[kg/kg diesel] Phenanthrene emissions per kg of combusted diesel

NETL Life Cycle Inventory Data - Process Documentation File

PM10_Great	[kg/kg diesel] Particulate matter greater than 10 microns emissions per kg of combusted diesel

PM2.5_PM10 [kg/kg diesel] Particulate matter between 2.5 and 10 microns emissions

per kg of combusted diesel

PM2.5 [kg/kg diesel] Particulate matter less

than 2.5 microns emissions per kg of

combusted diesel

BC [kg/kg diesel] Black carbon particulates

less than 2.5 microns emissions per kg

of combusted diesel

OC [kg/kg diesel] Organic carbon

particulates less than 2.5 microns emissions per kg of combusted diesel

PAH [kg/kg diesel] Polycyclic aromatic

hydrocarbon emissions per kg of

combusted diesel

Prop [kg/kg diesel] Propylene emissions per

kg of combusted diesel

Pyrene [kg/kg diesel] Pyrene emissions per kg

of combusted diesel

Selenium [kg/kg diesel] Selenium emissions per

kg of combusted diesel

SO2 [kg/kg diesel] Sulfur dioxide emissions

per kg of combusted diesel

SOX [kg/kg diesel] Sulfur oxides emissions

per kg of combusted diesel

TOC [kg/kg diesel] Total organic carbon

emissions per kg of combusted diesel

Toluene [kg/kg diesel] Toluene emissions per kg

of combusted diesel

VOC [kg/kg diesel] Volatile organic

compound emissions per kg of

combusted diesel

Tracked Input Flows:

Diesel

[Technosphere] Diesel for combustion

Section II: Process Description

Associated Documentation

This unit process is composed of this document and the data sheet (DS) Stage3_Diesel_Combustion.02.xlsx, which provides additional details regarding relevant calculations, data quality, and references.

Goal and Scope

This unit process provides a summary of relevant input and output flows associated with the combustion of diesel utilized for several downstream processes. The reference flow of this unit process is: 1 kg of Diesel

Boundary and Description

Overview

This unit process provides a summary of relevant input and output flows associated with the combustion of diesel. There are several grouping scenarios that represent the type of engine, sector, and control. The electric generation or electric power sector includes the combustion of diesel in a reciprocating or turbine engine or an external combustion boiler for electricity only or combined heat and power (CHP) (EPA, 2014). The industrial sector includes the combustion of diesel in a reciprocating or turbine engine or an external combustion boiler for producing, processing, or assembling goods; i.e. manufacturing and mining (EPA, 2014). The commercial sector includes the combustion of diesel in a reciprocating or turbine engine or an external combustion boiler for nonmanufacturing business, such as private and public organizations, government activities, social groups, or institutional living guarters (EPA, 2014). The mobile source scenario in this process consists of diesel motor vehicles; specifically a car and truck type (EPA, 2014). Non-greenhouse gas (GHG) emissions for electric generation, industrial, and commercial scenarios were taken from the U.S.EPA's (United States Environmental Protection Agency) WebFIRE database (EPA, 2012), while GHG emissions for these scenarios were derived from EPA's 2011 GHG Emission Factors Hub (EPA 2011). These mobile source scenario emissions were derived from NREL's (National Renewable Energy Lab) US LCI (U.S. Life Cycle Inventory) Database (NREL, 2011a; 2011b). Additional mobile source scenarios are those for marine vessels using category 2, category 3, and auxiliary engines powered by marine distillate or residual

oil. These emissions scenarios were derived from Argonne National Laboratory's Life Cycle Analysis of Conventional and Alternative Marine Fuels in GREET (AGL, 2013). Table 1 through Table 5 shows which individual scenarios are available in the model. An "X" indicates that the scenario is available. A grey cell indicates that the scenario is not available.

Table 1: Scenarios Included for Reciprocating Engines

	Nitrogen Oxide (NO _x) Reduction Technology				
Sector	Uncontrolled	Selective non-catalytic reduction (SNCR)	Selective Catalytic Reduction (SCR)		
Electric Generation	X	X	X		
Industrial without Cogeneration	X	X	Х		
Industrial with Cogeneration	X	X	X		
Commercial with Cogeneration	X	X	Х		

Table 2: Scenarios Included for Turbines

	Nitrogen Oxide (NO _x) Reduction Technology						
Sector	Uncontrolled	Selective non- catalytic reduction (SNCR)	Selective Catalytic Reduction (SCR)	Diesel engine with direct flame after burner (Flame)	Diesel engine with steam or water injection (Steam)		
Electric Generation	X	Х	Х	Х	Х		
Industrial without Cogeneration	Х	Х	Х		Х		
Industrial with Cogeneration	X	X	Х		Х		
Commercial with Cogeneration	X	X	X		Х		

Table 3: Scenarios Included for Mobile Sources

Vehicle Type	
Car	Х
Truck	Х

Table 4: Scenarios Included for Boilers

Sector		Nitrogen Oxide (NO _x) Reduction Technology					
		Uncontrolled	Selective non- catalytic reduction (SNCR)	Selective Catalytic Reduction (SCR)	Flue Gas Recirculation	Low NOX burners	
	10-100 Million Btu/hr	X	X	X			
Industrial	<10 Million Btu/hr	X	X	X			
	>100 Million Btu/hr	X			X	X	
Commercial	10-100 Million Btu/hr	X	X	X			
and Institutional	<10 Million Btu/hr	X	X	X			
Institutional	>100 Million Btu/hr	X			X	X	
	10-100 Million Btu/hr						
Electric Generation	<10 Million Btu/hr						
	>100 Million Btu/hr	Х			Х	Х	

Table 5: Scenarios Included for Marine Vessels

Engine Type	Fuel Type			
Engine Type	Residual Oil	Marine Distillate		
Category 2 Engine	X	X		
Category 3 Engine	X	X		
Auxiliary Engine	X	X		

Table 6: Scenarios Included for Nonroad Engines in Compliance with EPA Tier IV Requirements

Engine Size or Locomotive Type	
$175 \le hp \le 750$	X
> 750 hp	Х
Line-Haul Locomotive	χ

Figure 1: Unit Process Scope and Boundary

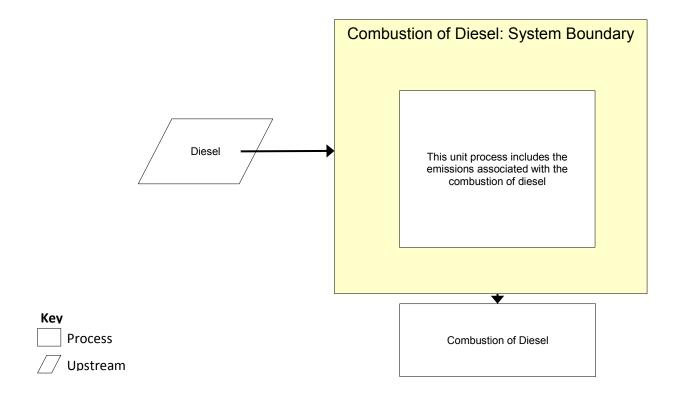


Table 6: Unit Process Input and Output Flows - Passenger Car

Flow Name	Value	Units (Per Reference Flow)
Inputs		
Diesel [Refinery products]	1.00	kg
Outputs		
Mobile Sources, Car [Crude oil products]	1.00E+00	kg
1,3-Butadiene [Hydrocarbons to air]	0.00E+00	kg
Acenaphthene [unspecified]	0.00E+00	kg
Acenaphthylene [Organic emissions to air (group VOC)]	0.00E+00	kg
Acetaldehyde (Ethanal) [Group NMVOC to air]	0.00E+00	kg
Acrolein [Group NMVOC to air]	0.00E+00	kg
Aldehyde (unspecified) [Group NMVOC to air]	0.00E+00	kg
Anthracene [Group PAH to air]	0.00E+00	kg
Arsenic [Heavy metals to air]	0.00E+00	kg
Benzene [Group NMVOC to air]	0.00E+00	kg
Benzo{a}anthracene [Group PAH to air]	0.00E+00	kg
Benzo{a}pyrene [Group PAH to air]	0.00E+00	kg
Benzo{b}fluoranthene [Group PAH to air]	0.00E+00	kg
Benzo{ghi}perylene [Group PAH to air]	0.00E+00	kg
Benzo{k}fluoranthene [Group PAH to air]	0.00E+00	kg
Beryllium [Inorganic emissions to air]	0.00E+00	kg
Cadmium [Heavy metals to air]	0.00E+00	kg
Methane [Organic emissions to air]	1.13E-04	kg
Chromium [Heavy metals to air]	0.00E+00	kg
Chrysene [Group PAH to air]	0.00E+00	kg
Carbon monoxide [Inorganic emissions to air]	3.73E-03	kg
Carbon dioxide [Inorganic emissions to air]	3.07E+00	kg
Dibenz(a,h)anthracene [Group PAH to air]	0.00E+00	kg
Ethyl benzene [Group NMVOC to air]	0.00E+00	kg
Fluoranthene [Group NMVOC to air]	0.00E+00	kg
Fluorene [Group NMVOC to air]	0.00E+00	kg
Formaldehyde (methanal) [Group NMVOC to air]	0.00E+00	kg
Hydrocarbons (unspecified) [Organic emissions to air (group VOC)]	8.08E-04	kg
Indeno[1,2,3-cd]pyrene [Group PAH to air]	0.00E+00	kg
Xylene (dimethyl benzene) [Group NMVOC to air]	0.00E+00	kg
Lead [Heavy metals to air]	0.00E+00	kg
Manganese [Heavy metals to air]	0.00E+00	kg
Mercury [Heavy metals to air]	0.00E+00	kg
Nitrous oxide (laughing gas) [Inorganic emissions to air]	4.89E-06	kg
Naphthalene [Group PAH to air]	0.00E+00	kg

NETL Life Cycle Inventory Data – Process Documentation File

Ammonia [Inorganic emissions to air]	5.48E-05	kg
Nickel [Heavy metals to air]	0.00E+00	kg
Nitrogen monoxide [Inorganic emissions to air]	8.28E-03	kg
Nitrogen dioxide [Inorganic emissions to air]	7.96E-04	kg
Phenanthrene [Group PAH to air]	0.00E+00	kg
Dust (> PM10) [Particles to air]	0.00E+00	kg
Dust (PM2,5 - PM10) [Particles to air]	1.51E-05	kg
Dust (PM2.5) [Particles to air]	4.56E-04	kg
Black carbon [Particles to air]	3.37E-04	kg
Organic carbon [Other emissions to air]	1.01E-04	kg
Polycyclic aromatic hydrocarbons (carcinogenic) [Group PAH to air]	0.00E+00	kg
Propene (propylene) [Group NMVOC to air]	0.00E+00	kg
Pyrene [Group PAH to air]	0.00E+00	kg
Selenium [Heavy metals to air]	0.00E+00	kg
Sulphur dioxide [Inorganic emissions to air]	4.82E-05	kg
Sulphur oxide [Inorganic emissions to air]	0.00E+00	kg
TOC, Total Organic Carbon [unspecified]	0.00E+00	kg
Toluene (methyl benzene) [Group NMVOC to air]	0.00E+00	kg
NMVOC (unspecified) [Group NMVOC to air]	8.26E-04	kg

^{*} Bold face clarifies that the value shown does not include upstream environmental flows.

Embedded Unit Processes

None.

References

AGL (2013)	Argonne National Laboratory (2013). Life Cycle Analysis of Conventional and Alternative Marine Fuels in GREET™ https://greet.es.anl.gov/publication-marine-fuels-13 . Last Accessed January 23, 2015.
EPA (2014)	U.S. Energy Information Administration (2014). Definitions of EIA Distillate Categories and Fuels Contained in the Distillate Grouping. EIA. Washington, DC. http://www.eia.gov/dnav/pet/tbldefs/pet_cons 821dsta tbldef2.asp. Last Accessed: March
EPA (2012)	25, 2014 U.S. Environmental Protection Agency (2012). WebFIRE. EPA. Washington, DC.

NETL Life Cycle Inventory Data – Process Documentation File

EPA (2011)	http://cfpub.epa.gov/webfire/ Last Accessed: March 23, 2014 U.S. Environmental Protection Agency (2011).
	Emission factors for greenhouse gas
	inventories. EPA. Washington, DC.
	http://www.epa.gov/climateleadership/inventor y/ghg-emissions.html. Last Accessed: March
	24, 2014
NREL (2011a)	National Renewable Energy Laboratory (2011).
,	Transport, passenger car, diesel powered.
	NREL.
	https://www.lcacommons.gov/nrel/process/sho
	w/a2f7a82a-cd47-436d-97af-
	6cdc0ed4c19d?qlookup=diesel+passenger+car
	&max=35&hfacet=&hfacetCat=&loc=&year=&
	dtype=&crop=&index=1&numfound=40&offset =. Last Accessed: March 26, 2014
NREL (2011b)	National Renewable Energy Laboratory (2011).
,	Transport, passenger car, diesel powered.
	NREL.
	https://www.lcacommons.gov/nrel/process/sho
	w/8a1a1102-a870-44fa-acd6-
	52c844ac181f?qlookup=diesel+passenger+truc
	k&max=35&hfacet=&hfacetCat=&loc=&year=
	&dtype=&crop=&index=1&numfound=114&off
	set=. Last Accessed: March 26, 2014

NETL Life Cycle Inventory Data – Process Documentation File

Section III: Document Control Information

Date Created: March 27, 2014

Point of Contact: Timothy Skone (NETL), Timothy.Skone@NETL.DOE.GOV

Revision History:

Original/no revisions

How to Cite This Document: This document should be cited as:

NETL (2014). NETL Life Cycle Inventory Data – Unit Process: Combustion of Diesel. U.S. Department of Energy, National Energy Technology Laboratory. Last Updated: January 2015 (version 02). www.netl.doe.gov/LCA (http://www.netl.doe.gov/LCA)

Section IV: Disclaimer

Neither the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) nor any person acting on behalf of these organizations:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe on privately owned rights; or
- B. Assumes any liability with this report as to its use, or damages resulting from the use of any information, apparatus, method, or process disclosed in this document.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by NETL. The views and opinions of the authors expressed herein do not necessarily state or reflect those of NETL.